Lecture 23 erma of $\overline{\text { Pr i? }}$
Plan: 1) finish statius ellipsoid
2) Analyse ellipsoid
3) Apply to LP. Nest

Analysis of ellipsoid Recall main lemma:
Volume Lemma: set E ' be ellipsoid after E in the algaith. Then:

$$
\text { vol }\left(E^{\prime}\right) \leq e^{-\frac{1}{2(n+1)}} v_{0}(E) .
$$

Before proving, some preliminaries:
need A P.D, or else ellipsoid will contain anentire line.
Def: Given counter $e \in \mathbb{R}^{n}, \& a$ positive-definite matrix $A \in \mathbb{R}^{n \times n}$, the ellipsoid $E(e, A)$ is given by

$$
\begin{aligned}
& E(e, A):=\left\{x \in \mathbb{R}^{n} \cdot(\right. \\
& \text { egg. } A=\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right], \\
& e=(0,0)
\end{aligned}
$$

$$
A^{-1}=\left[\frac{1}{3} 0\right],\left(x, y T A^{-1}(x, y)=\frac{x^{2}}{3}+y^{2} \leq 1\right.
$$

Recall: Matrix $A \in \mathbb{R}^{n \times n}$ positive-definte
if $D A$ is symmetric $A^{\top}=A$

$$
\text { \& } D x^{\top} A x>0 \quad \forall x<\mathbb{R}^{4} \backslash\{0\}
$$

Equivalent conditions: Let A be a symmetric matrix. Then:

$$
\begin{aligned}
& A P \cdot D . \\
\Leftrightarrow & \exists B \in \mathbb{R}^{u \times n} 5 \lambda \cdot A=B^{\top} B \\
\Leftrightarrow & A^{-1} P \cdot D . \quad\left(A^{-1}=B^{-1}\left(B^{-1}\right)^{\top}\right)
\end{aligned}
$$

$\Leftrightarrow A$ has n orthonormal eigenvectors w/psitive eigenvalues.

Facts about ellipsoids

- They are affine transformations (linear map + translation) of ont spheres. balls.

$$
E(0, I)=\left\{x \in \mathbb{R}^{n}: x^{\top} x \leq 1\right\} .
$$

Proof:

$$
\text { Let } \begin{aligned}
A & =B^{\top} B ; \\
E(0, I) & =T E(e, A)
\end{aligned}
$$

men T affine bijection

$$
T: x \mapsto y:=\left(B^{-1}\right)^{\top}(x-e) .
$$

$$
\begin{aligned}
& y \in \text { unit ball } \\
& \Leftrightarrow(x-e)^{\top} B^{-1}\left(B^{-1}\right)^{\top}(x-e) \leq 1 \\
&(x-e)^{\top} A^{\prime \prime} A^{-1}(x-e) \leq 1 \\
& \Leftrightarrow x \in E(e, A) .
\end{aligned}
$$

- Volume : if $A=\left[\begin{array}{ccc}a_{1} & 0 \\ 0 & 0 \\ 0 & a_{n}\end{array}\right]$,
i.e. $E(e, A)$ "coordinate aligned" then
$\operatorname{vol} E(e, A)=\sqrt{a_{1} \ldots a_{n}} \operatorname{vol} E(0, I)$.

$$
A=B^{\top} B
$$

(because $\operatorname{vel} E(e, A)=\operatorname{vol} E(0, A)$.

$$
\begin{aligned}
& \&\left(B^{-}\right)^{\top} E(0, A)=E(0, I) \Rightarrow E(0, A)=B^{\top} E(0, I) . \\
& \Rightarrow \operatorname{vol} E(0, A)=|\operatorname{det} B| \operatorname{vol} E(0, I) \\
& =\sqrt{\operatorname{det} A} \operatorname{vd} E(0, I)=\sqrt{a_{1} \ldots a_{n}} \operatorname{vol} E(0, I) .
\end{aligned}
$$

Proof of Volume Lemma:

- Begin with special case $E=E(0, \pm)$ (unit sphere). \& inequality $x_{1} \geqslant 0$.

- Claim: We can tare

$$
E^{\prime}=\left\{x:\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \leq 1\right\}
$$

i.e. $E^{\prime}=E(e, A)$ where $e=\left(\frac{1}{n+1}, 0, \ldots, 0\right)$ and $A=\operatorname{diag}\left(\left(\frac{n}{n+1}\right)^{2}, \frac{n^{2}}{n^{2}-1}, \ldots \cdot \frac{n^{2}}{n^{2}-1}\right) 甘$
Proof of clair exercise: E ' is actually min.

- Need to show $E \cap\{x, x, \geqslant 0\} \subseteq E$ '.
- Let $x \in E \cap\left\{x: x_{l} \geqslant 0\right\}$. Then

$$
\begin{aligned}
&\left(\frac{n+1}{n}\right)^{2}(\underbrace{\left(x_{1}-\frac{1}{n+1}\right.}_{\text {expand }})^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \text { w show } \leq 1 . \\
&= \frac{n^{2}+2 n+1}{n^{2}} x^{2}-(\underbrace{\left.\frac{n+1}{n}\right)^{2} \frac{2 x_{1}}{n+1}+\frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2}} \\
&= \frac{2 n+2 n c e l}{n^{2}} \underbrace{2 n+1} x_{1}^{2} x_{1}^{2} \\
& \downarrow \text { collect } \\
& x^{2} \frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 n+2}{n^{2}} \underbrace{x_{1}\left(x_{1}-1\right)}_{\substack{b \\
0 \leq k<c \mid}}+\frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \underbrace{n}_{\substack{i=1 \\
\sum_{i=1}^{n / c} \\
n x \| \leq 1}} x_{i}^{2} \\
& \leqslant \frac{1}{n^{2}}+\frac{n^{2}-1}{n^{2}} \leq 1 . \quad \square
\end{aligned}
$$

- Proof of volume lemma in this case: vol E vol E^{\prime}
Vol $\underset{E}{E}(e, A)=\sqrt{a_{1} \ldots a_{n}} \operatorname{vol} \stackrel{\downarrow}{E}(0, I)$;

$$
\begin{aligned}
& \sqrt{a_{1} \ldots a_{n}}=\sqrt{\left(\frac{n}{n+1}\right)^{2} \frac{n^{2}}{n^{2}-1} \cdot \frac{n^{2}}{n^{2}-1}} \\
& =\frac{n}{n+1}\left(\frac{n^{2}}{n^{2}-1}\right)^{\frac{n-1}{2}}=\left(1-\frac{1}{n+1}\right)\left(1+\frac{1}{n^{2}-1}\right)^{\frac{n-1}{2}} \\
& \leq e^{-\frac{1}{n+1}} e^{\frac{n-1}{2}\left(\frac{1}{n^{2}-1}\right)}
\end{aligned}
$$

$$
=e^{-\frac{1}{n+1}} e^{\frac{1}{2(n+1)}}=e^{-\frac{1}{2(n+1)}} \cdot \square
$$

used inequality $1+x \leq e^{x}$

- What if we hare some other inequality $d^{\top} x \leq 0$?

Δ can asome $\|d\|=1$ by $d \leftarrow \frac{d}{\|d\|}$
D Figure out E^{\prime} by rotaticy so $d=-e_{1}$, using previous case, then rotatily back. shows vol. ratio still $\leq \exp \left(-\frac{1}{2(n+1)}\right)$.
Δ Endup with $E^{\prime}=E\left(-\frac{d}{n+1}, F\right)$,

$$
F=\frac{n^{2}}{n^{2}-1}\left(I-\frac{2}{n+1} d d_{d \text { unit }} d^{\top}\right)
$$

(check F positive definite).

- What if E not int spathe? Use affine transform T (preserves ratios of volumes) to turn E into unit ball.
 for ellipsoid E.

- New

$$
\begin{aligned}
& \text { Now } \frac{\text { vol } E^{\prime}}{\text { vol } E}=\frac{v_{0}\left(T^{-1} E_{0}^{\prime}\right.}{\text { volE }} \\
& =\frac{\text { vol } E_{0}^{\prime}}{\text { vol } E(0, I)} \leq e^{-\frac{1}{2(n+1)}}
\end{aligned}
$$

Completes proof of volume lemma.

How to compute E^{\prime} ?

- Let's carefully compute

If $E=E(e, A)$, recall

$$
T: x \longmapsto y:=
$$

has

- First find d. Under T,

$$
\begin{aligned}
& \left\{x: c^{\top} x \leq c^{\top} e\right\} \rightarrow\{y: \\
& =\{y: \quad\}=\{y: \\
& \text { for } d=
\end{aligned}
$$

- Recall that

$$
E_{0}^{\prime}=E C
$$

- Let $b==$

Applying T^{-1} to E_{0}^{\prime} yields

$$
\begin{aligned}
E^{\prime} & =E(\\
& =E(
\end{aligned}
$$

Ellipsoid (Concretely):

- Intiralije $E=$
- while e\& P :
\square Let
∇ Let $b=$
D set $e \leftarrow$
D Set $A \leftarrow$

Analysis summary:
After k iterations,

$$
\Rightarrow \quad \operatorname{Vol} E \leq e^{-\frac{k}{2(n+1)}} \operatorname{vol} E_{0} \text {. }
$$

terminates in \leq

$$
a(n+1) \ln \frac{v d E_{0}}{v_{01} P}
$$

steps. (finds point in P).

Linear progranmuiz:

